
Download free eBooks at bookboon.com

SQL: A Comparative Survey

59

Predicates and Propositions

3 Predicates and Propositions
3.1 Introduction

In Chapter 1 of the theory book I defined a database to be “…an organised, machine-readable collection
of symbols, to be interpreted as a true account of some enterprise.” I also gave this example (extracted
from Figure 1.1):

StudentId Name CourseId

S1 Anne C1

I suggested that those green symbols, organised as they are with respect to the blue ones, might be
understood to mean:

“Student S1, named Anne, is enrolled on course C1.”

That is how Chapter 3 of the theory book started. It continued with the following paragraph:

In this chapter I explain exactly how such an interpretation can be justified. In fact, I describe
the general method under which data organized in the form of relations is to be interpreted—
to yield information, as some people say. This method of interpretation is firmly based in the
science of logic. Relational database theory is based very directly on logic. Predicates and
propositions are the fundamental concepts that logic deals with.

The remainder of the chapter could be said to apply equally well to the interpretation of SQL databases
were it not for SQL’s use of a logic based on three truth values instead of the usual two, this arising from
its special construct referred to as NULL. Many of the effects of this intrusion have already been examined
in Chapter 2. Here I make further observations that arise in connection with the corresponding sections
of this chapter in the theory book.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

60

Predicates and Propositions

3.2 What Is a Predicate?

Consider the declarative sentence—a proposition—that is used to introduce this topic in the theory book:

“Student S1, named Anne, is enrolled on course C1.”

Recall that the terms S1, Anne, and C1 are designators, each referring unambiguously to a particular
thing. The chapter later explains how a tuple can provide values—attribute values—to be interpreted as
designators to be substituted for the corresponding parameters of a predicate. Thus, this sentence might
be represented by the tuple denoted in Tutorial D by TUPLE{StudentId SID('S1'), Name
NAME('Anne'), CourseId CID('C1') }. As SQL allows NULL to appear wherever a value
can appear, we have to entertain the notion that the row denoted in SQL by (SID('C1'), NULL,
CID('C1')) might represent some sentence. (Aside: SQL does not use attribute names to connect
values to their corresponding parameters. Instead, the correspondence is determined by position and
I have assumed that the parameters are to be considered in the order StudentId, Name, CourseId. End
of aside.) Now, could that sentence be “Student S1, named NULL, is enrolled on course C1”? Well, no,
because NULL is not a name and really doesn’t designate anything. The row might instead represent the
sentence “Student S1, whose name is not known, is enrolled on course C1”. But that sentence contains
nothing that can be regarded as a designator substituted for the parameter Name.

If we now recast this into two simpler sentences, as in the theory book, we will get something like,
“Student S1’s name is not known” and “Student S1 is enrolled on course C1”. Let’s now try replacing S1
by NULL in the second of those:

Example 3.1:

“Student NULL is enrolled on course C1.”

Again that doesn’t make sense. If NULL is always to be interpreted as meaning “some value should appear
here but we don’t know which”, then perhaps the sentence should be “Some student, whose student
identifier is not known, is enrolled on course C1.” But again, that sentence contains nothing that can be
regarded as a designator substituted for the parameter StudentId.

Similarly, NULL, might appear in place of C1:

Example 3.2:

“Student S1 is enrolled on course NULL.”

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

61

Predicates and Propositions

and again we have to reject that and write instead, perhaps, “Student S1 is enrolled on some course,
whose course identifier is not known”, or perhaps, “Student S1 is enrolled on some course but we don’t
know which one”. The row (SID('S1'), NULL) could indeed mean either of those and either
would be consistent with the notion of “some value appears here but we don’t know which”. However, in
certain operations, such as the “outer joins” that we shall meet in Chapter4, SQL uses that very row to
mean “Student S1 is not enrolled on any courses”, which, although perhaps a more likely interpretation
in practice, is not consistent with the meaning “some value appears here but we don’t know which” (nor
with the fact that SQL would not regard two such students as being enrolled on the same set of courses).

3.3 Substitution and Instantiation

Section 3.2 shows how NULL might appear in substitution for a parameter of a predicate and how it might
thus participate in instantiation of that predicate to yield a proposition. Now consider instantiations of
the dyadic predicate a < b. As well as instantiations such as 5 < 10 (a true one) and 9 < 6 (a false one), we
now have to entertain the possibility of instantiations such as 5 < NULL, NULL < 6, and NULL < NULL.
In SQL these comparisons evaluate to that intrusive truth value, unknown. Now, Section 3.2 in the
theory book goes on to explain that the extension of a predicate consists exactly of those instantiations
of it that evaluate to true, from which we can conclude, of every instantiation that does not appear in
the extension, that it is false, in which case it must appear instead in the extension of the negation of
that predicate. In SQL, then, the instantiation 5 < NULL, for example, cannot be considered to appear
in either the extension of a < b or NOT (a < b). Or so it would appear.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

SQL: A Comparative Survey

62

Predicates and Propositions

3.4 How a Table Represents an Extension…

…or does it? The theory book here describes how each tuple in a relation represents a true instantiation
of some predicate and each true instantiation is represented by some tuple in that relation. Thus, a
relation represents an extension, its body containing exactly one tuple corresponding to each element
of the extension.

It is true that some SQL tables can be interpreted in this way but it is also true that some SQL tables
cannot. In fact there are at least two distinct ways in which an SQL table cannot be thus interpreted:

a) In SQL it is possible for the same row to appear more than once in a table. Moreover, if
tables t1 and t2 differ only in the number of appearances of some row, then that difference is
significant—they are not the same table.

b) Although I have noted that in SQL the instantiation 5 < NULL cannot be considered to appear
in either the extension of a < b or NOT (a < b), the row (5, NULL) can appear in a table. What
could be the corresponding predicate? It would have to be some dyadic predicate, P(a, b) say,
such that P(5, NULL) is true. But if NULL stands for “some value but we don’t know which”,
how could that row appear in the same table as, say, (6, 12)? If (6, 12) means “6 is related to 12”
then (5, NULL), in relational theory, would have to mean that 5 is related to NULL in that same
way. But it can’t, because NULL doesn’t designate anything. If instead it means “5 is related to
something whose identity is unknown”, then we have a sentence in which nothing appears in
substitution for the parameter b.

3.5 Deriving Predicates from Predicates

The corresponding section in the theory book describes how predicates can be derived from predicates
using (a) the logical connectives of the propositional calculus, such as AND, OR, and NOT, and (b)
quantifiers, such as “there exists” (∃) and “for all” (∀). Here I examine how SQL’s truth value, unknown,
intrudes on those connectives and quantifiers.

Logical Connectives

For these I give SQL’s extended truth tables in which the symbol , for unknown, appears along with
the usual T and F.

Negation (NOT, ¬)

p ¬p

T F

U U

F T

Figure 3.1: The SQL Truth Table for Negation

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

63

Predicates and Propositions

We now have three rows instead of just two. As you can see, ¬p is defined as in two-valued logic (2VL)
when p is either true or false, but ¬(unknown) is unknown.

Other monadics

In 2VL there are just 4 (22) monadic operators, of which negation is really the only “useful” one. When
a third truth value is introduced we have 27 (33) monadics and SQL gives names to several of these in
addition to NOT for its version of negation. Some of these are shown in Figure 3.1a.

p p IS TRUE p IS UNKNOWN p IS FALSE p = TRUE p = UNKNOWN p = FALSE

T T F F T U F

U F T F U U U

F F F T F U T

Figure 3.1a: Truth Tables for Some Other SQL Monadics

Note that under none of the “IS” operators shown in Figure 3.1a does a truth value in the first column
map to unknown—contrast this with the treatment of “=”. In addition to those three SQL also has p IS
NOT TRUE, p IS NOT UNKNOWN, and p IS NOT FALSE, equivalent to NOT(p IS TRUE),
NOT(p IS UNKNOWN), and NOT(p IS FALSE), respectively. The test x = x IS UNKNOWN
can be useful in cases where it evaluates to TRUE when x IS NULL does not—for examples, see the
Effects of NULL in Chapter 2, Section 2.10, Types and Representations.

We turn now to the dyadic operators, noting that with three truth values there are now 19,683 (3 to the
power 32) all told, compared with just 16 (2 to the power 22) in 2VL. SQL directly supports (i.e., has
names for) just eight of these, including counterparts of conjunction, disjunction, and—surprisingly—
implication (which, as we shall see, appears to have been included in the language by accident).

Conjunction (AND, ∧)

p q p ∧ q

T T T

T U U

T F F

U T U

U U U

U F F

F T F

F U F

F F F

Figure 3.2: The SQL Truth Table for AND

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

64

Predicates and Propositions

Now we have nine rows (32) instead of just four (22). Again, when unknown is not involved, the rows
are as for 2VL. Also, when anything is paired with false, the result is false, as in 2VL. Our intuition, that
“p and q” is true exactly when both operands are true, is preserved.

Disjunction (OR, ∨)

p q p ∨ q

T T T

T U T

T F T

U T T

U U U

U F U

F T T

F U U

F F F

Figure 3.3: The SQL Truth Table for Disjunction

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

SQL: A Comparative Survey

65

Predicates and Propositions

Again we have nine rows instead of just four and again, when unknown is not involved, the rows are as
for 2VL. Also, when anything is paired with true, the result is true, as in 2VL. Our intuition, that “p or
q” is true exactly when at least one operand is true, is preserved.

Now, in the theory book it is noted that disjunction could equally well be defined in terms of conjunction
and negation, as

p ∨ q ≡ ¬(¬p ∧ ¬q)

and the truth table in Figure 3.4 of that book is given as proof of that equivalence. The question arises,
does the same equivalence hold in SQL? To answer that we need to look at the revised Figure 3.4.

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)

T T F F F T

T U F U F T

T F F T F T

U T U F F T

U U U U U U

U F U T U U

F T T F F T

F U T U U U

F F T T T F

Figure 3.4: SQL Disjunction in Terms of SQL Negation and SQL Conjunction

As you can see, the final column is the same as in Figure 3.3, so that equivalence does also hold in SQL.

Conditionals

At first sight SQL does not appear to have a single operator for expressing logical implication. In this
respect it would be in common with most programming languages, including Tutorial D. However,
standard SQL defines a partial ordering for its three truth values, under which false is deemed to
precede true. Thus, the comparisons p < q, p > q, p <= q, and p >= q are all supported in standard SQL
(in addition to p = q, of course).

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

66

Predicates and Propositions

Now, in Section 3.5 of the theory book it is noted that in 2VL p → q is equivalent to ¬p ∨ q. Study of
Figure 3.5 reveals that ¬p ∨ q does indeed equate to p → q when neither operand is unknown, and the
same is true of p <= q! (It is the pronunciation, “is less than or equal to”, rather than “implies”, that led
to my observation that SQL appears to include direct support for a 3VL form of implication by accident.)

p q ¬p ¬p ∨ q p <= q

T T F T T

T U F U U

T F F F F

U T U T U

U U U U U

U F U U U

F T T T T

U U U U U

F F T T T

Figure 3.5: The SQL Truth Tables for ¬p∨ q and p <= q

Note, however, that p <= q is not equivalent to ¬p ∨ q. Intuitively, we understand that “p implies q” is
true whenever q is true. This holds for ¬p ∨ q but not for p <= q, as the row for p = U and q = T shows.
The U in the last column for that row arises from SQL’s general rule that whenever an operand of a
comparison is NULL, the result is unknown—and NULL, when it is the result of evaluating a Boolean
expression, is considered synonymous with unknown. In fact, Figure 3.5 gives a demonstration of the
fact that SQL is not always faithful to its own concept, that NULL represents “a value exists here but we
don’t know which value”. What U really means when it appears in the column for p <= q is that <= is
undefined for that particular pair of truth values.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

67

Predicates and Propositions

The biconditional p ↔ q can be expressed in Tutorial D by p = q and the same is true of SQL. The
question then arises as to whether, in SQL, p = q is equivalent to (¬p ∨ q) ∧ (¬q ∨ p). This matter is
investigated in the truth table of Figure 3.6.

p q ¬p ∨ q ¬q ∨ p (¬p ∨ q) ∧ (¬q ∨ p) p = q

T T T T T T

T U U T U U

T F F T F F

U T T U U U

U U U U U U

U F U T U U

F T T F F F

F U T U U U

F F T T T T

Figure 3.6: SQL p = q ≡ (¬p ∨ q) ∧ (¬q ∨ p)

As you can see, the equivalence does hold in SQL, but only because SQL treats unknown as not equal
to—i.e., not the same truth value as—itself! This treatment of p = q is consistent with the general rule
that applies when NULL is an operand of a comparison in SQL.

Figure 3.6a similarly investigates whether p = q is equivalent to (p <= q) ∧ (q <= p), and as you can see,
the equivalence again holds in SQL.

p q p <= q q <= p (p <= q) ∧ (q <= p) p = q

T T T T T T

T U U U U U

T F F T F F

U T U U U U

U U U U U U

U F U U U U

F T T F F F

F U U U U U

F F T T T T

Figure 3.6a: SQL p = q ≡ (p <= q) ∧ (q <= p)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

68

Predicates and Propositions

Quantification

To quantify something, as the theory book has it, is to state its quantity, to say how many of it there
are. For example, in Tutorial D the expression COUNT(r) denotes the number of tuples in the relation
r, to be interpreted as the number of objects represented by those tuples that satisfy a predicate that r
is considered to represent. Universal quantification—stating that something is true of all objects under
consideration—is involved in expressions such as

• AND(r,c), meaning that all objects that satisfy a predicate for r also satisfy the condition
(another predicate) c, and

• IS_EMPTY(r), meaning that no object satisfies a predicate for r—in other words, every
object satisfies the negation of that predicate.

Existential quantification—stating that something is true of at least one object under consideration—can
be expressed by OR(r,c), meaning that at least one object that satisfies a predicate for r also satisfies
c, and IS_NOT_EMPTY(r).

The names for the aggregate operators AND and OR reflect the facts that when we confine our attention to
finite sets, universal and existential quantification are equivalent to repeated invocations of dyadic AND and
dyadic OR, respectively. Note that AND(r,c) is equivalent to COUNT(r) = COUNT(r WHERE c), and
OR(r,c) is equivalent to COUNT(r WHERE c) > 0 and also to IS_NOT_EMPTY(r WHERE c).

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

SQL: A Comparative Survey

69

Predicates and Propositions

Quantification also appears in various guises in SQL, but its meaning is muddied by those same two
violations of relational theory that we have already seen muddying the waters: duplicate rows and
NULL. For example, SQL’s (SELECT COUNT(*) FROM r), a so-called scalar subquery (because
it is an expression denoting a table with one row and one column, enclosed in parentheses), denotes
the number of rows in the table r, but can we really say that this represents the number of objects that
satisfy a predicate for r, if the same row can be counted more than once, or if NULL appears in place of
a column value in some row of r? In fact, what might it mean to say that a row does or does not satisfy
a predicate? In 2VL we say that object a satisfies predicate P(x) exactly when P(a) is true. Does this still
hold in 3VL, or might SQL deem a to satisfy P(x) also when P(a) is unknown? Well, it turns out that
SQL uses both interpretations, depending on the context, as we shall discover.

SQL counterparts of Tutorial D quantifications

Consider Tutorial D’s AND(r,c), where r is a relation and c is a condition that is applicable to tuples
of r. This variety of AND is an aggregate operator in Tutorial D. The expression evaluates to true when
every tuple in r satisfies c, otherwise false. Looking for an SQL counterpart of this expression, we are
faced with a plethora of possibilities. It is a salutary exercise to examine the apparent choices to see
which, if any, is the best fit. For aggregation SQL provides what it calls “aggregate functions”. These are
counterparts, not to Tutorial D’s aggregate operators but rather to its constructs such as SUM(x) that
can appear in invocations of SUMMARIZE. Aggregate functions are used in several of the candidates we
shall examine. It is important to bear in mind two general rules that apply to aggregation in SQL. The
first is that appearances of NULL are always excluded, such that, for example SUM(x) evaluates to 3
when summing 1, 2 and NULL, even though 1+2+CAST(NULL AS INTEGER) evaluates to NULL.
The second is that, except in the case of COUNT, aggregation over the empty set always yields NULL,
even though the sum of no integers, for example, really should be zero and the AND of no truth values
should be TRUE. With that in mind, let us now look at some of the possibilities for determining whether
condition c is satisfied by every row of table r.

1. (SELECT EVERY(c) FROM r)
The result is false if c evaluates to false for at least one row of r, unknown if c evaluates to
unknown for each row of r (including the case where r is empty), otherwise true. Note that
the treatment thus differs from AND(r,c) when r is empty, the result being unknown instead
of true. Note also that the result can be true even when c does not evaluate to true for every
row of r, namely, when c is true for at least one row and unknown for each of the others. Here,
then, we can observe that a row appears to satisfy c if c evaluates to either true or unknown.

2. (SELECT MIN(c) FROM r)
This is available as a result of the partial ordering of truth values previously mentioned. It is
equivalent to (SELECT EVERY(c) FROM r).

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

70

Predicates and Propositions

3. (SELECT EVERY(c IS TRUE) FROM r)
Here we are explicitly stating that we deem r to satisfy c only when c is true for r. But it is still
the case that the expression yields unknown when r is empty.

4. TRUE =ALL (SELECT c FROM r)
Here we are using the unusual construct SQL calls a “quantified comparison predicate”. For
example, the comparison X =ALL (SELECT Y FROM T) results in true if X = Y is true
for every row of r (including the case where r is empty), false if X = Y is false for at least one
row of r, otherwise unknown. (Note that the word ALL is attached to the comparison operator,
not the table expression that follows it. ALL (SELECT Y FROM T) is not a legal expression
in SQL.) So TRUE =ALL (SELECT c FROM r) yields the same result as AND(r,c)
exactly when c is true for every row of table r, but otherwise it can yield either unknown or false.

5. TRUE =ALL (SELECT c IS TRUE FROM r)
At last we have an expression that yields the same result as AND(r,c) when c is true for every
row of table r and otherwise yields false.

We can conduct a similar investigation in connection with Tutorial D’s OR(r,c):

1. (SELECT SOME(c) FROM r)
The result is true if c evaluates to true for at least one row of r, unknown if c evaluates to unknown
for each row of r (including the case where r is empty), otherwise false. The treatment differs
from OR(r,c) in the case where r is empty and the result is unknown—you might find that
a bit strange when you consider that if r contains no rows, then obviously there doesn’t exist
a row in r that satisfies c.

2. (SELECT MAX(c) FROM r) and (SELECT ANY(c) FROM r)
These are both equivalent to (SELECT SOME(c) FROM r). ANY is just an alternative
spelling for SOME.

3. (SELECT SOME(c IS TRUE) FROM r)
This is also equivalent to (SELECT SOME(c) FROM r). The addition of IS TRUE has
no effect this time.

4. TRUE =SOME (SELECT c FROM r)
This differs from (SELECT SOME(c) FROM r) because it yields false instead of unknown
when r is empty and also because it yields unknown when c evaluates to false for at least one
row of r and unknown for all the others.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

71

Predicates and Propositions

5. TRUE =SOME (SELECT c IS TRUE FROM r)
Similar to our fifth candidate for AND(r,c), we finally have an expression that yields the
same result as OR(r,c) when c is true for some row of table r and otherwise yields false.

For Tutorial D’s IS_EMPTY(r) SQL has NOT EXISTS(r), which yields true whenever r is
empty, otherwise false. Note, then, that NOT EXISTS(r WHERE FALSE) is not equivalent to
(SELECT EVERY(FALSE) FROM r), because of the difference in treatment of the empty table.

Similarly, for IS_NOT_EMPTY(r) SQL has EXISTS(r), which yields False whenever r
is empty, otherwise True. Note, then, that EXISTS(r WHERE TRUE) is not equivalent to
(SELECT SOME(TRUE) FROM r). Note also that EXISTS(r WHERE c) evaluates to false in
the case where r is not empty, c evaluates to unknown for at least one row of r, and c evaluates to false
for every other row. Thus, although SQL uses the name EXISTS for this operator, it is not the 3VL
existential quantifier. Similarly, NOT EXISTS(r WHERE NOT (c)) does not in general express
universal quantification in 3VL.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

SQL: A Comparative Survey

72

Predicates and Propositions

Historical Notes

It is commonly believed that the term Structured Query Language, sometimes taken to be the full
name for SQL, is inspired by the SELECT-FROM-WHERE structure. This may be the case, but it is
not clear whether that was the intention of the authors of SEQUEL. The Abstract for that paper gives a
clue: “Moreover, the SEQUEL user is able to compose these basic templates [SELECT-FROM-WHERE
templates] in a structured manner to form more complex queries.” That “structured manner” might
have referred to SEQUEL’s support for nesting one SELECT-FROM-WHERE structure within another.

The syntax SELECT * FROM was not included in SEQUEL because the SELECT clause itself was
optional, as was the key word FROM. Thus, SQL expressions such as SELECT * FROM T1 and SELECT
* FROM T1, T2 could be written as just T1 and T1, T2 in SEQUEL. The shorthand TABLE t was
added to the SQL standard in 1992 but remains an optional conformance feature.

The monadic operators IS TRUE, IS FALSE, IS UNKOWN and their negated counterparts
IS NOT TRUE, IS NOT FALSE, IS NOT UNKNOWN were added to the language in SQL:1992.
They remain optional conformance features.

Support for comparison operators on values of type BOOLEAN, along with the aggregate functions
EVERY, SOME, ANY, and MAX and MIN on Booleans, arrived in SQL in the 1999 edition of the
international standard, as already noted in Chapter 2. The partial ordering of truth values was perhaps
partly a consequence of SQL’s treatment of NULL when the rows of a table are to be placed in some
specified order (typically by use of an ORDER BY clause). For example, suppose that rows of ENROLMENT
are to be placed in alphabetical order of NAME, for which NULL appears in some row. Does this row
appear before the rows for Anne or after the rows for Zack? When the first edition of the SQL standard
(1986) was being drafted it was discovered that existing implementations were divided fairly evenly
between those that placed NULL first in the ordering and those that placed it last. Rather than toss a
coin to decide which implementations would be deemed in conformance, the committee decided not
to legislate on this matter. When BOOLEAN was added in 1999, the treatment of comparisons on values
of this type was at least consistent with that decision. It was also consistent with the existing treatment
of comparisons on values of all other types.

As an aside, it is interesting to observe that SQL:2003 included some new material in connection with
ORDER BY, allowing the user to specify the treatment of NULL, by writing either NULLS FIRST or
NULLS LAST. However, no similar addition appears in connection with comparisons.

http://bookboon.com/

